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The fact that the integral ∫ π

−π
einxdx

is 1 only when n is 0 and for other integral values of n, it is 0, can be very useful.
It is this very observation that forms the backbone of a general class of techniques in
number theory called the circle method. In a nutshell, this method lets one count, by
integrating an appropriately picked function over the unit circle, hence the name.

Roth’s theorem is question about existence of three term APs, but like many exis-
tence problems, it can be resolved by counting, and making sure your count doesn’t end
at 0. Formally, the theorem states that given a number δ > 0, called the density, there
exists a large enough N such that any subset of {0, 1, 2, 3, . . . , N−1} with a size greater
than δN contains a three term arithmetic progression. The key idea in the proof is to
count the number of triples x, y, z such that x+ z−2y is 0. And this is where the circle
method comes in, transforming a combinatorial problem into a problem in analysis.

1 Sketch of proof

The key idea in the proof of Roth’s theorem is that for a given 0 < δ < 1, and a large
enough N , if a subset A of [N ]1, which has size δN does not have a three term AP, then
there exists a progression B1 in [N ] such that the density of A in B1 is greater than
δ. Clearly, A ∩ B1 won’t contain a three term AP either, so one iterates the argument
again and again to get a sequence of nested sub progressions B1, B2, . . . Bk such that
the density of A in Bk is at least 1. But that would mean Bk = A, and if |Bk| ≥ 3,
we’ll have a contradiction. So one picks a large enough N such that |Bk| ≥ 3, and that
leads to the contradiction. Which means A must have had a three term AP.

1[N ] is shorthand for the set {0, 1, 2, 3 . . . , N − 1}
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2 Fourier analysis on finite cyclic groups

Let’s begin by endowing the set [N ] some additional structure, namely identifying it
with the group Z/NZ. Furthermore, with the counting measure Z/NZ, we can integrate
functions from Z/NZ to C. And with the discrete metric, we have the topology on the
space; we can finally do some analysis.

Consider the set of functions from Z/NZ to C. This clearly forms a Hilbert space,
with the inner product being

〈f, g〉 =
1

N

∫
Z/NZ

f(x)g(x)dx

=
1

N

N−1∑
k=0

f(k)g(k)

The next step would be to determine an orthonormal basis for the Hilbert space. It
turns out that the set of homomorphisms from Z/NZ to C does form an orthonormal
basis for the space. Define hr to be the following homomorphism

hr(k) = e
2πi
N
rk

Notice that

1

N

∫
Z/NZ

hr(x)dx =

{
1 if r = 0

0 if r 6= 0

The rth Fourier coefficient of f is defined as

f̂(r) = 〈f, hr〉

=
1

N

N−1∑
k=0

f(k)e−
2πi
N
rk

Hence, for any function f

f(x) = f̂(0)h0(x) + f̂(1)h1(x) + . . .+ f̂(N − 1)hN−1(x)

3 Counting progressions in [N ][1]

Note: We’ll call (x, y, z) a progression in Z/NZ when x+ z = 2y in the group Z/NZ,
and we’ll call it a progression in [N ] when x+ y = 2z in Z.

Consider a subset A of [N ] of size δN . Identify A as a subset of Z/NZ as well. We
are looking for three term APs, or triples (x, y, z) such that x + z − 2y = 0 in Z/NZ.
The number of such triples will be given by

S0 =
∑

x,y,z∈A

1

N

∫
Z/NZ

hx+z−2y(x)dx

=
∑

x,y,z∈[N ]

1

N

N−1∑
k=0

1A(x)1A(y)1A(z)e−
2πi
N
k(x+z−2y)

= N2

N−1∑
k=0

1̂A(k)21̂A(−2k)
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where 1A is the indicator function of A. This counts the number of three term APs in
the group Z/NZ. But all the progressions in Z/NZ need not be progressions in [N ].
But if we know that x and y belong to

[
N
3
, 2N

3

]
, and x+ z − 2y = 0 in the group, then

x, y, z form an AP in [N ]. Define the set MA to be
[
N
3
, 2N

3

]
∩ A. Then, a lower bound

for the number of three term APs in [N ] is given by

S =
∑

x,y∈MA

∑
z∈A

1

N

∫
Z/NZ

hx+z−2y(x)dx

= N2

N−1∑
k=0

1̂A(k)1̂MA
(k)1̂MA

(−2k)

= N2

(
1̂A(0)1̂MA

(0)1̂MA
(0) +

N−1∑
k=1

1̂A(k)1̂MA
(k)1̂MA

(−2k)

)

= δ|MA|2 +N2

N−1∑
k=1

1̂A(k)1̂MA
(k)1̂MA

(−2k)

We want to show that [N ] contains at least one three term AP . But the expression for
S also counts triples like (x, x, x), which we don’t want to count as APs. A contains
|A| such triples. Hence we’d like S to be greater than |A| to show the existence of an
AP. We have the following lemma

Lemma 3.1. If N is odd, 1̂A(k) < ε for all k 6= 0, where ε = δ2

8
, and |MA| ≥ δN

4
, then

S ≥ δ3N2

32
.

Proof. We know that

S = δ|MA|2 +N2

N−1∑
k=1

1̂A(k)1̂MA
(k)1̂MA

(−2k)

We can bound the second term in the sum using Cauchy-Schwarz inequality and
Plancherel’s identity.∣∣∣∣∣

N−1∑
k=1

1̂A(k)1̂MA
(k)1̂MA

(−2k)

∣∣∣∣∣ ≤ ε

N−1∑
k=1

∣∣∣1̂MA
(k)1̂MA

(−2k)
∣∣∣

≤ ε

(
N−1∑
k=1

∣∣∣1̂A(k)
∣∣∣2) 1

2
(
N−1∑
k=1

∣∣∣1̂A(−2k)
∣∣∣2) 1

2

= ε

(
N−1∑
k=1

∣∣∣1̂A(k)
∣∣∣2)

= ε

(
N−1∑
k=1

|1A(k)|2
)

= ε|MA|

From this, we get that

S ≥ δ|MA|2 − εN2|MA|
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Since |MA| ≥ δN
4

, and ε = δ2

8
, we get

S ≥ δ3N2

32

This lemma shows that if we pick an N > 32
δ2

, any subset A which satisfies the
hypotheses of the lemma will contain a 3-AP.

4 Density incrementation

Now consider the contrapositive of lemma 3.1. It says that if a subset A of [N ] does
not contain a 3-AP, then one of the following conditions must hold

1. For some non-zero k, 1̂A(k) > ε, where ε = δ2

8
.

2. |MA| < δN
4

.

We don’t consider the third condition where N could be less than 32
δ2

because we can
make N as large as we want. Consider the second condition. If the density of A in[
N
3
, 2N

3

]
is less than δN

4
, then by the pigeonhole principle, A has a density greater than

δ+ δ
8

in either
[
0, N

3

]
or
[
2N
3
, N
]
. To put it more generally, there exists an AP Z in [N ]

of length greater than or equal to N
3

such that the density of A in Z is δ + δ
8
, which is

greater than the original density. Specifically, the progression Z in this case is either
the interval

[
0, N

3

]
or
[
2N
3
, N
]
.

We will show even when 1̂A(k) > ε for some non-zero k, there exists a sufficiently
long progression in [N ] such that the density of A in that subprogression is greater than
δ.

Lemma 4.1. If 1̂A(r) > γ for some r 6= 0, then there exists a Z/NZ subprogression B

of length at least
√
N
8

such that |A ∩B| ≥
(
δ + γ

4

)
|B|.

Proof. Consider the pairs of points

(0, 0), (1, r), (2, 2r), . . . , (N − 1, (N − 1)r)

These points lie in the square [0, N ] × [0, N ]. Divide this square into b
√
Nc2 squares

(where bxc is the greatest integer less than x) of side length l = N
b
√
Nc . Since there are

less than N squares, two of the points must lie in the same square. That means for
some d ≤ l

rd ≤ l (mod N)

Let B′ be an AP of length
⌊
bNc
2π

⌋
in Z/NZ

. . . ,−3d,−2d,−d, 0, d, 2d, 3d, . . .

Since |B′|d is less than |B′|l, which in turn is less than N
2π

, which means that it can be
written as a union of two disjoint APs in [N ].
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Consider the following inequality:

∣∣∣N 1̂B′(r)− |B′|
∣∣∣ =

∣∣∣∣∣∣
∑
Z/NZ

1B′(x)
(
e−

2πi
N
rx − 1

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

|x|≤ 1
2
|B′|

(
e−

2πi
N
rdx − 1

)∣∣∣∣∣∣
≤

∑
|x|≤ 1

2
|B′|

∣∣∣e− 2πi
N
rdx − 1

∣∣∣
≤ 2

|B′|
2∑

x=0

2π

N
rdx

≤ 4πl

N

|B′|
2∑

x=0

x

≤ |B′| |B
′|πl
N

≤ |B
′|

2

This means ∣∣∣N 1̂B(r)
∣∣∣ ≥ |B′|

2

The required progression, in which the density of A will be greater than
(
δ + γ

4

)
, will

be a translation of B′, i.e. B = B′ + c for some constant c.
Define fA to be the balanced indicator of A, i.e.

fA(k) = 1A(k)− δ

Notice that the mean of fA over [N ] is 0. Furthermore, if

N−1∑
k=0

fA(k)1B(k) ≥ κ|B|

then

|A ∩B| ≥ (δ + κ) |B|

and vice versa. Here’s why.

N−1∑
k=0

fA(k)1B(k) =
∑
k∈B

fA(k)

= (1− δ)|A ∩B| − δ(|B| − |A ∩B|)
= |A ∩B| − δ|B|

5



|A ∩ B| − δ|B| will be greater than κ|B| iff |A ∩ B| > (δ + κ)|B|. Now our problem
reduces to determining for what c,

∑N−1
k=0 fA(k)1B′(k − c) is greater than or equal to

γ
4
|B′|. Define G(c) to be

G(c) =
N−1∑
k=0

fA(k)1B′(k − c)

The Fourier transform of G is the following:

Ĝ(r) = Nf̂A(r)1̂B′(r)

And we know that ∑
[N ]

|G(c)| ≥
∣∣∣Ĝ(r)

∣∣∣ ≥ 1

2
γN |B′|

And since the mean of G over [N ] is 0∑
[N ]

G(c) + |G(c)| ≥ 1

2
γN |B′|

For some c0

G(c0) + |G(c0)| ≥
1

2
γ|B′|

Hence, G(c0) ≥ 1
4
γ

The progression B = B′ + c0 is the one that satisfies our requirements.

Lemma 4.2. If [N ] has a Z/NZ progression B of length
√
N
8
, such that the density of A

in B is greater than or equal to δ+ γ
4
, and it is a union of two disjoint [N ] progressions,

then there exists a progression P in [N ] such that |P | ≥ γ
8
|B| such that A has density

δ + γ
8
in P .

Proof. Write B as P1tP2, where P1 and P2 are disjoint [N ] progressions, and |P1| ≤ |P2|.
If |P1| ≤ γ

8
|B|, then

|A ∩ P2| ≥ |A ∩B| − |P1|

≥
(
δ +

γ

4

)
|B| − P1

≥
(
δ +

γ

8

)
|B|

≥
(
δ +

γ

8

)
|P2|

One the other hand, if |P1| > γ
8
, then one of A must have density δ+ γ

4
on one of P1 or

P2.

With the previous lemmas, we can finally state in full the density incrementation
theorem.

Theorem 4.3. Given 0 < δ < 1, and N > 32
δ2
, and a subset A of [N ] of size δN , if for

some non-zero k, 1̂A(k) > δ2

8
or
∣∣[N

3
, 2N

3

]
∩ A

∣∣ < δN
4
, then there exists a progression

in [N ] of length at least δ2
√
N

512
such that the density of A in the progression is at least

δ + δ2

64
.

Proof. Follows from lemmas 4.1 and 4.2.
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5 Iterating the density incrementation argument

The final step in the proof of Roth’s theorem is to increment the density until one reaches
a sub progression in which A has density 1. If the length of that sub progression is
greater than 3, then we’re done. After each iteration, the density grows by at least δ2

64
,

hence after k = 64
δ2

(1− δ) steps, the density will be at least 1. We just need to pick a
large enough N such that the sub progression after k steps has at least 3 elements. We
want

δ2kN
1

2k

512k
≥ 3

N ≥ 32k
(

512

δ2

)2k·k

Substituting the given value of k, we get our lower bound on N , and that completes
the proof.
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