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The financial meltdowns that happened in 1929 and 2008 mark the dark ages in 
our economic history. Many theories have been proposed to explain, predict and 
mitigate these ‘financial crises’.

Sources claim that possible reasons for these failures include deregulation and 
relaxation of the normal standards of prudent lending. As a result of deregulation, 
Banks started loaning large amounts of money to subprime borrowers1.

According to Richard Lambert, the removal of the ceiling on loans and reduction of 
bank’s liquidity requirements triggered the secondary banking crisis of 1973-742
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Critical Transitions

● When a Dynamical System makes 
an abrupt shift from one state to 
another it is called a ‘Critical 
Transition’.

● These transitions are observed in 
many natural systems such as 
climatic and ecological systems.

● Early warning signals and 
mitigation strategies are highly 
sought.

Image sourced from Nature (Scheffer et al.)
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The InterBank Model

● Financial systems are highly 
interconnected networks and show 
very complex dynamics.

● We adopted a simplified model, 
introduced by Robert May, known 
as the InterBank3 model. 

● Despite its simplicity, it shows a 
variety of interesting features.

A network comprising thousands of 
banks

Core of the Network
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● Banks are characterised by four variables:

○ Assets: l (lending) and e (external assets).
○ Liabilities: b (borrowing).

● Bank is solvent if assets exceed liabilities i.e:

᷏ = (l + e) - b ≥ 0

● Randomly generated with a probability p for a directed link to exist between every pair of nodes. 
● Banks start out with fixed total assets (a = l + e), and no liabilities.
● The system has a fixed Lending ratio (ᶚ). 

l = ᶚa   

● After the links are made, each bank distributes l equally among all its neighbours.
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● At each time step, a bank is picked at random from the set of all banks.
● It is given a shock fe, where e denotes the total external assets of the bank, 

and f is a number between 0 and 1, which is called the shock size.
● Given a shock fe, the bank’s net worth reduces by the amount fe. If the net 

worth is still positive, the bank is said to be solvent, otherwise the bank fails.
● When a bank fails, the amount (᷏-fe) is called the damage, and distributed 

equally between all the banks that had lent the failed bank money.
● This means these banks receive a smaller shock of size (᷏-fe)/n, where n is 

the number of banks that had lent the original bank money.
● In this manner, a shock propagates throughout the system until it becomes 

small enough to do no harm.
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Parameters to vary

● The model starts out with four parameters which we can possibly set:
a. The starting assets: a
b. The lending ratio: ᶚ
c. The probability of two banks being connected: p
d. The shock size as a fraction of the total external assets: f

● It doesn’t really make a difference what you set a to be, since that will just scale up or 
down the size of the perturbations and the net worth, in essence, making no difference 
to the results of the simulations.

● That leaves us with just three parameters to vary: ᶚ, p, and f.
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Varying the lending ratio (contd.)

● The graphs don’t reveal anything qualitative that wasn’t obvious a priori.
● The more banks lend out, the more they borrow as well, leading to a greater 

chance of an individual bank failing.
● Also, the fact that banks have lent out so much money to other banks make 

the secondary shocks more dangerous.
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● It appears that a greater degree of interconnectivity is good for the system as 
a whole, even though it may be bad for an individual bank.

● Surprisingly, there’s a peak at p=0.1, where the chance of the system 
collapsing is the highest. This probability stays consistent even when the 
other parameters are varied.
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● As can be seen from the graphs, the system can settle into one of three fixed 
states, depending on the shock size.

○ When the shock size is less than 0.4, then practically no banks fail in 30 time steps.
○ When the shock size is between 0.4 and 0.8, 5 out of 100 banks fail in 30 time steps.

○ Beyond 0.8, the number of banks failing goes up drastically, with about 25 out of 100 banks 
failing.

● This observation can help us detect early signs of failure, and help us design 
mitigation measures.
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● One can look at time series data of banks’ net worth, and by looking at the 
fluctuations, determine the mean shock size. If the shock size is beyond 0.8, 
that’s a signal that the system will collapse with high probability in the next 
few time steps.

● Another warning signal is the presence of low connectivity between banks. 
We’ve seen a low probability of an edge between two banks correlates with 
high risk of banks failing within the next few time steps.
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● One way to mitigate the possibility of banks failing due to large shock sizes is 
to reduce the lending ratio of all the banks. This can be done centrally, i.e. the 
Reserve/Federal banks can mandate it for all banks. As we’ve seen, that 
reduces the risk of systemic failure.

● Another way of mitigating risk would be to increase the connectivity between 
different banks. That can be done by encouraging them to lend and borrow 
money from various different banks, rather a few select banks.
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● Food webs, in particular can be modelled as graphs where different species 
can be the nodes in the graphs, and the edges between two species, 
represent one of the species consuming the other as food.

● The assets and liabilities can be seen as birth and death rate respectively, 
with the net worth being the overall growth rate. The net worth is then just 
growth rate, which if negative, kills off the population.
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● For a given ecosystem, we can measure the size of fluctuations in it.
● These fluctuations can correspond to the shock size in the InterBank model.
● That means if the shock size is beyond a certain threshold, the system will 

fail.
● This makes shock size an early warning signal.
● Unlike the InterBank model, we can’t affect the shock size in ecosystems we 

are only observing; we can only measure it. This means we can’t use it for 
mitigation strategies in those ecosystems.

Early warning signals in ecosystems
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Mitigating the possibility of a catastrophic shift
● The challenge in mitigation is to expand the stability domain so that the 

system doesn’t undergo catastrophic transition.
● When we can control certain parameters in an ecosystem, e.g. fisheries, we 

can vary those parameters to ensure the system stays stable.



An example of a highly connected food web

Image sourced from Progress in Oceanography, Dambacher et al.
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Overfishing in Marine ecosystem

● One example of an ecosystem where humans have a significant degree of 
control over some of the parameters are marine fisheries.

● The amount harvested by humans every season can be modelled analogous 
to the shock size in the InterBank model.

● As seen in the results of that model, the probability of a multiple banks failing 
goes up significantly if the shock size is more than a certain threshold.

● Similarly, the probability of multiple species going extinct in the ecosystem 
goes up significantly if the harvesting rate is beyond a certain threshold.
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Caveats of modelling ecosystems as graphs

● The InterBank model assumes that the probability of any two nodes sharing 
an edge is p, but that is actually not the case. Most food webs are highly 
asymmetric, with a few nodes (i.e. predators) connected to a lot of smaller 
nodes (i.e. prey).

● The InterBank model also doesn’t account for the fact that banks may recover 
after an initial shock. The same also happens with ecosystems, i.e. they may 
recover after a shock.
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Conclusion

● We used a completely different kind of strategy to model multiple interacting 
species, namely graphs.

● This modelling technique revealed certain results about the system as a 
whole, something that wouldn’t have been possible if we focused on each 
individual separately.

● This modelling technique can be scaled up to include an arbitrary number of 
participants.

● The results obtained can be used to predict (with a certain probability of 
success) a failure in the future, and can also be used to design mitigation 
strategies.
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